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Complex dynamics.
Quasiregular maps on R,

Iteration of quasiregular maps.



Complex dynamics

* The study of iteration of analytic maps on C (or C U {oc}).

* Interested in the long-term behaviour of the sequence
z, 1(2), P(2), F2), ...
for different starting values z. Notation: e.g., f2(z) = f(f(z)).

¢ Can consider different types of functions:

polynomial

9

transcendental entire



Complex dynamics

Given f: C — C, we partition the plane into the Fatou set F; and the
Julia set J;.

Fatou set Set of starting values z near which iterates " are ‘stable’.
If Uis a small disc in Ft, then f7(U) always stays small.

J — .’\f"(U)
@ ¢ ¥

Formally: 7y = {z : {f"} is normal on a nhd of z}.

Julia set Jy = C\ Ft.
The iterates " behave chaotically on J;.
For z € J;, can find w arbitrarily close to z such that
sequences (f"(z)) and (f"(w)) are very different.



f(z) = 2% 4 0.18 + 0.55/. The Julia set J; is boundary of white region.

Picture credit: usefuljs.net/fractals


usefuljs.net/fractals

f(z) = sin z. The Julia set J; is boundary of black region.

Picture credit: http://paulbourke.net/fractals/sinjulia/


http://paulbourke.net/fractals/sinjulia/

jez =C.
f(z) = —z2e'~#. Julia set J; is in black.

Superattracting fixed points at 0 and —1 shown as dots.
Picture credit: L. Rempe-Gillen



Let f be a complex polynomial of degree > 2. Then
Jt is closed and non-empty.

Jt is completely invariant under f: that is,

f(Tr) = T = FU(Tr).

Blowing-up property: if U is open and meets J;, then

|J (V) > €\ {one point}.

n>1

If z € Jf, then Jr = U0 F"(2).
Jr has a dense subset of periodic points.

Similar results hold for rational and transcendental entire functions.



Quasiregular maps RY — RY generalise analytic functions on C.
Analytic functions map small circles to small circles.

Informally, a continuous map f: R? — RY is called quasiregular
(gr) if it maps infinitesimal spheres to infinitesimal ellipsoids of
bounded eccentricity (i.e. the ratio major axis/minor axis is bdd).

For K > 1, we say that f is K-quasiregular if the amount of local
stretching is < K everywhere.

(x,y) — (Kx,y)is K-qr.
With N € N and cyl. co-ords on R3, the map (r, 6, x3) — (r, N6, x3).
Analytic functions on C are 1-qr.

Qr maps of RY classified as polynomial type or transcendental type.



Good news
Some machinery from complex analysis carries over to qr maps.
Qr maps are open, discrete and differentiable a.e.

Composition of two quasiregular maps is itself quasiregular.
Thus: fisqr = f"isqr.

Bad news
Sum of two quasiregular maps need not be quasiregular.

The amount of stretching grows on iteration:
fis K-gr = only that f" is K"-qr.



The Zorich map Z: R® — R3\ {0} is a quasiregular analogue of the
exponential function. It can be defined as follows:

@ Choose a bi-Lipschitz map
h: [=1,1]2 = {(x1, X2, X3) : X2 + X5 + x5 =1, x3 > 0}.
Q Define Z: [-1,1]2 x R — {(x1, X2, X3) : X3 > 0} by
Z(x1, X2, X3) = €%h(xq, X2).

@ Extend Z to all of R3 by repeatedly reflecting in planes.

The Zorich map is quasiregular on R3, is periodic in the x; and x»
directions, and grows/decays exponentially in x3 direction.



For z € C, p € N, recall that z°P = exp(plog z).
Similarly, can define a quasiregular “power map” by

x — Z(pZ71(x)).

A quasiregular “sine” function S: R3 — R3 can be constructed by
mapping a half-infinite beam onto {x3 > 0}, then extending by
reflections.

Can construct a “tangent” function T: R® — R3 U {co} analogous
to tan z.
Numerical plots of iteration of T follow...



Iteration of T. Blue points — 0 fast, red points — 0 slowly.

200
180
160
140
120

100

40




Iteration of 0.7 T near a pole. Thanks to Dan Goodman for code.




The classical “non-normality of {f"}” definition of J; isn’t helpful
for general quasiregular maps.

Instead, use blowing-up property to define a Julia set.
Sun and Yang suggested, for quasiregular maps on C (= R?),
defining

Jr={z € C:forany nhd Uof z, | | f"(U) > C\ {one point}}

n>1

Iff: C — Cis K-gr with K < deg(f) < oo, then J; # 0.

Can this be generalised further?



Ideally, we might consider

Tfinite = {x € R? :for any nhd U of x, | J f(U) > RY\ {finite set}}
n>1
but we don’t yet know this is always non-empty. Instead, we allow a
‘small’ infinite set to be missed out...

Let f: RY — RY be K-quasiregular, with K < deg(f) < co. Define

Jcap = {x €R? : forany nhd U of x, | J f"(U) > RY\ {small set}}.
n>1

Then Jcap # 0.

Here {small set} means a set of conformal capacity zero.
All definitions of 7 agree for analytic functions on C.
Conjecture that Jcap = Jfinjte-



lteration of quasiregular “sine” function

Theorem (Fletcher and N.)

For a quasiregular analogue of the sine function, S: R? — RY,
* for every non-empty open set U, we have

U s"(u) =R,

n>1

* thus all points have the blowing-up property, so Js = RY.
* Periodic points of S are dense in RY.




Bergweiler and Eremenko introduced and iterated the gr “sine” map S
to create a counter-intuitive decomposition of RY.

A subset H c RY is called a hair if there is a continuous bijection
v: [0,00) — H such that v(t) — oo as t — co. We call v(0) the
endpoint of the hair.

H
endpoint
Bergweiler and Eremenko expressed RY as an (uncountable) union of
hairs such that
any two hairs intersect only at a common endpoint (if at all); and

the union of the hairs without their endpoints has Hausdorff
dimension 1. (It follows that set of endpoints has Hausdorff dim d.)



Escape to infinity
Definition
For a function f: RY — RY, the escaping set is

I(f) = {x e RY : f"(x) — oo}.

For a complex polynomial f:

* All large z belong to /(f);
¢ all escaping points — oo at same rate;
° Jr = 0I(f).

For polynomial type qr maps:

° same as above, except only get
Jr C OI(f).




For transcendental entire functions on C:
Eremenko (1989) proved that /(f) # 0 and J; = 0I(f).
Big open question: is every component of /(f) unbounded?
Escaping points can — oo at different rates.
There is a fast escaping set A(f) C I(f). Again, Jr = 0A(f).

For transcendental type qr maps on RY:
Escaping set I(f) # 0, but only have inclusion J; C 9/(f).
There is an example for which J; # 0I(f) and another for which

I(f) has a bounded component.

If f is trans type gr and does not grow too slowly, then J; = 0A(f).

Conjecture: This holds without the growth condition.



Escaping points of the Zorich mapping:

Picture credit: A. Fletcher and D. Goodman



