Julia sets in higher dimensions

Dan Nicks

University of Nottingham

June 2017

Overview

- Complex dynamics.
- Quasiregular maps on \mathbb{R}^d .
- Iteration of quasiregular maps.

Complex dynamics

- The study of iteration of analytic maps on \mathbb{C} (or $\mathbb{C} \cup \{\infty\}$).
- Interested in the long-term behaviour of the sequence

$$z, f(z), f^2(z), f^3(z), \ldots$$

for different starting values *z*. Notation: e.g., $f^2(z) = f(f(z))$.

• Can consider different types of functions:

Complex dynamics

Given $f : \mathbb{C} \to \mathbb{C}$, we partition the plane into the *Fatou set* \mathcal{F}_f and the *Julia set* \mathcal{J}_f .

Fatou set Set of starting values *z* near which iterates f^n are 'stable'. If *U* is a small disc in \mathcal{F}_f , then $f^n(U)$ always stays small.

Formally: $\mathcal{F}_f = \{z : \{f^n\} \text{ is normal on a nhd of } z\}.$

Julia set $\mathcal{J}_f = \mathbb{C} \setminus \mathcal{F}_f$. The iterates f^n behave chaotically on \mathcal{J}_f . For $z \in \mathcal{J}_f$, can find *w* arbitrarily close to *z* such that sequences $(f^n(z))$ and $(f^n(w))$ are very different. $f(z) = z^2 + 0.18 + 0.55i$. The Julia set \mathcal{J}_f is boundary of white region.

Picture credit: usefuljs.net/fractals

 $f(z) = \sin z$. The Julia set \mathcal{J}_f is boundary of black region.

Picture credit: http://paulbourke.net/fractals/sinjulia/

• $\mathcal{J}_{e^z} = \mathbb{C}$. • $f(z) = -z^2 e^{1-z^2}$. Julia set \mathcal{J}_f is in black.

Superattracting fixed points at 0 and -1 shown as dots. Picture credit: L. Rempe-Gillen

Properties of Julia sets

Let *f* be a complex polynomial of degree \geq 2. Then

- \mathcal{J}_f is closed and non-empty.
- \mathcal{J}_f is completely invariant under f: that is,

$$f(\mathcal{J}_f) = \mathcal{J}_f = f^{-1}(\mathcal{J}_f).$$

- Blowing-up property: if U is open and meets \mathcal{J}_f , then $\bigcup_{n\geq 1} f^n(U) \supset \mathbb{C} \setminus \{\text{one point}\}.$
- If $z \in \mathcal{J}_f$, then $\mathcal{J}_f = \overline{\bigcup_{n \ge 0} f^{-n}(z)}$.
- \mathcal{J}_f has a dense subset of periodic points.

Similar results hold for rational and transcendental entire functions.

Quasiregular mappings

- Quasiregular maps $\mathbb{R}^d \to \mathbb{R}^d$ generalise analytic functions on \mathbb{C} .
- Analytic functions map small circles to small circles.
- Informally, a continuous map *f*: ℝ^d → ℝ^d is called *quasiregular* (qr) if it maps infinitesimal spheres to infinitesimal ellipsoids of bounded eccentricity (i.e. the ratio major axis/minor axis is bdd).
- For *K* ≥ 1, we say that *f* is *K*-quasiregular if the amount of local stretching is ≤ *K* everywhere.

Simple examples

- $(x, y) \mapsto (Kx, y)$ is K-qr.
- With $N \in \mathbb{N}$ and cyl. co-ords on \mathbb{R}^3 , the map $(r, \theta, x_3) \mapsto (r, N\theta, x_3)$.
- Analytic functions on $\mathbb C$ are 1-qr.

Qr maps of \mathbb{R}^d classified as *polynomial type* or *transcendental type*.

Quasiregular mappings

Good news

- Some machinery from complex analysis carries over to qr maps.
- Qr maps are open, discrete and differentiable a.e.
- Composition of two quasiregular maps is itself quasiregular. Thus: *f* is qr ⇒ *fⁿ* is qr.

Bad news

- Sum of two quasiregular maps need not be quasiregular.
- The amount of stretching grows on iteration:

f is *K*-qr \implies only that f^n is K^n -qr.

Example: the Zorich mapping

The Zorich map $Z : \mathbb{R}^3 \to \mathbb{R}^3 \setminus \{0\}$ is a quasiregular analogue of the exponential function. It can be defined as follows:

Choose a bi-Lipschitz map

$$h: [-1,1]^2 \to \{(x_1,x_2,x_3): x_1^2 + x_2^2 + x_3^2 = 1, x_3 \ge 0\}.$$

② Define
$$Z : [-1, 1]^2 \times \mathbb{R} \to \{(x_1, x_2, x_3) : x_3 \ge 0\}$$
 by

$$Z(x_1, x_2, x_3) = e^{x_3}h(x_1, x_2).$$

Solution \mathbb{Z} to all of \mathbb{R}^3 by repeatedly reflecting in planes.

The Zorich map is quasiregular on \mathbb{R}^3 , is periodic in the x_1 and x_2 directions, and grows/decays exponentially in x_3 direction.

More examples

• For $z \in \mathbb{C}$, $p \in \mathbb{N}$, recall that $z^p = \exp(p \log z)$. Similarly, can define a quasiregular "power map" by

$$x \mapsto Z(\rho Z^{-1}(x)).$$

- A quasiregular "sine" function $S \colon \mathbb{R}^3 \to \mathbb{R}^3$ can be constructed by mapping a *half*-infinite beam onto $\{x_3 \ge 0\}$, then extending by reflections.
- Can construct a "tangent" function *T* : ℝ³ → ℝ³ ∪ {∞} analogous to tan *z*.
 Numerical plots of iteration of *T* follow...

Iteration of *T*. Blue points \rightarrow **0** fast, red points \rightarrow **0** slowly.

Iteration of 0.7*T* near a pole. Thanks to Dan Goodman for code.

Are there Julia sets for qr maps?

- The classical "non-normality of $\{f^n\}$ " definition of \mathcal{J}_f isn't helpful for general quasiregular maps.
- Instead, use blowing-up property to *define* a Julia set. Sun and Yang suggested, for quasiregular maps on C (= R²), defining

$$\mathcal{J}_f = \{z \in \mathbb{C} : \text{for any nhd } U \text{ of } z, \ \bigcup_{n \ge 1} f^n(U) \supset \mathbb{C} \setminus \{\text{one point}\}\}$$

Theorem (Sun and Yang, c.2000)

If $f : \mathbb{C} \to \mathbb{C}$ is K-qr with $K < \deg(f) < \infty$, then $\mathcal{J}_f \neq \emptyset$.

Can this be generalised further?

Ideally, we might consider

$$\mathcal{J}_{finite} = \{ x \in \mathbb{R}^d : \text{for any nhd } U \text{ of } x, \bigcup_{n \ge 1} f^n(U) \supset \mathbb{R}^d \setminus \{ \text{finite set} \} \}$$

but we don't yet know this is always non-empty. Instead, we allow a 'small' infinite set to be missed out...

Theorem (Bergweiler (deg < ∞), Bergweiler and N. (deg = ∞)) Let $f : \mathbb{R}^d \to \mathbb{R}^d$ be K-quasiregular, with $K < \deg(f) \le \infty$. Define $\mathcal{J}_{cap} = \{x \in \mathbb{R}^d : \text{ for any nhd } U \text{ of } x, \bigcup_{n \ge 1} f^n(U) \supset \mathbb{R}^d \setminus \{\text{small set}\}\}.$ Then $\mathcal{J}_{cap} \neq \emptyset$.

- Here {*small set*} means a set of conformal capacity zero.
- All definitions of $\mathcal J$ agree for analytic functions on $\mathbb C$.

• Conjecture that
$$\mathcal{J}_{cap} = \mathcal{J}_{finite}$$

Iteration of quasiregular "sine" function

Theorem (Fletcher and N.)

For a quasiregular analogue of the sine function, $S \colon \mathbb{R}^d \to \mathbb{R}^d$,

for every non-empty open set U, we have

$$\bigcup_{n\geq 1} S^n(U) = \mathbb{R}^d;$$

- thus all points have the blowing-up property, so $\mathcal{J}_S = \mathbb{R}^d$.
- Periodic points of S are dense in \mathbb{R}^d .

An application: Karpińska's paradox

Bergweiler and Eremenko introduced and iterated the qr "sine" map *S* to create a counter-intuitive decomposition of \mathbb{R}^d .

Definition

A subset $H \subset \mathbb{R}^d$ is called a *hair* if there is a continuous bijection $\gamma \colon [0, \infty) \to H$ such that $\gamma(t) \to \infty$ as $t \to \infty$. We call $\gamma(0)$ the *endpoint* of the hair.

Bergweiler and Eremenko expressed \mathbb{R}^d as an (uncountable) union of hairs such that

- any two hairs intersect only at a common endpoint (if at all); and
- the union of the hairs without their endpoints has Hausdorff dimension 1. (It follows that set of endpoints has Hausdorff dim *d*.)

Escape to infinity

Definition

For a function $f \colon \mathbb{R}^d \to \mathbb{R}^d$, the *escaping set* is

$$I(f) = \{x \in \mathbb{R}^d : f^n(x) \to \infty\}.$$

For a complex polynomial *f*:

- All large *z* belong to *I*(*f*);
- all escaping points $\rightarrow \infty$ at same rate;
- $\mathcal{J}_f = \partial I(f)$.

For polynomial type qr maps:

• same as above, except only get $\mathcal{J}_f \subset \partial I(f)$.

Escape to infinity

For transcendental entire functions on \mathbb{C} :

- Eremenko (1989) proved that $I(f) \neq \emptyset$ and $\mathcal{J}_f = \partial I(f)$.
- Big open question: is every component of *I*(*f*) unbounded?
- Escaping points can $\rightarrow \infty$ at different rates.
- There is a *fast escaping set* $A(f) \subset I(f)$. Again, $\mathcal{J}_f = \partial A(f)$.

For transcendental type qr maps on \mathbb{R}^d :

- Escaping set $I(f) \neq \emptyset$, but only have inclusion $\mathcal{J}_f \subset \partial I(f)$.
- There is an example for which $\mathcal{J}_f \neq \partial I(f)$ and another for which $\overline{I(f)}$ has a bounded component.

Theorem (Bergweiler, Fletcher and N.)

If f is trans type qr and does not grow too slowly, then $\mathcal{J}_f = \partial A(f)$.

Conjecture: This holds without the growth condition.

Escaping points of the Zorich mapping:

Picture credit: A. Fletcher and D. Goodman