Julia sets in higher dimensions

Dan Nicks

University of Nottingham

June 2017

Overview

- Complex dynamics.
- Quasiregular maps on \mathbb{R}^{d}.
- Iteration of quasiregular maps.

Complex dynamics

- The study of iteration of analytic maps on $\mathbb{C}($ or $\mathbb{C} \cup\{\infty\})$.
- Interested in the long-term behaviour of the sequence

$$
z, f(z), f^{2}(z), f^{3}(z), \ldots
$$

for different starting values z. Notation: e.g., $f^{2}(z)=f(f(z))$.

- Can consider different types of functions:

Complex dynamics

Given $f: \mathbb{C} \rightarrow \mathbb{C}$, we partition the plane into the Fatou set \mathcal{F}_{f} and the Julia set \mathcal{J}_{f}.

Fatou set Set of starting values z near which iterates f^{n} are 'stable'. If U is a small disc in \mathcal{F}_{f}, then $f^{n}(U)$ always stays small.

Formally: $\mathcal{F}_{f}=\left\{z:\left\{f^{n}\right\}\right.$ is normal on a nhd of $\left.z\right\}$.

Julia set $\mathcal{J}_{f}=\mathbb{C} \backslash \mathcal{F}_{f}$.
The iterates f^{n} behave chaotically on \mathcal{J}_{f}.
For $z \in \mathcal{J}_{f}$, can find w arbitrarily close to z such that sequences $\left(f^{n}(z)\right)$ and $\left(f^{n}(w)\right)$ are very different.

$f(z)=z^{2}+0.18+0.55 i$. The Julia set \mathcal{J}_{f} is boundary of white region.

Picture credit: usefuljs.net/fractals
$f(z)=\sin z$. The Julia set \mathcal{J}_{f} is boundary of black region.

Picture credit: http://paulbourke.net/fractals/sinjulia/

- $\mathcal{J}_{e^{z}}=\mathbb{C}$.
- $f(z)=-z^{2} e^{1-z^{2}}$. Julia set \mathcal{J}_{f} is in black.

Superattracting fixed points at 0 and -1 shown as dots.
Picture credit: L. Rempe-Gillen

Properties of Julia sets

Let f be a complex polynomial of degree ≥ 2. Then

- \mathcal{J}_{f} is closed and non-empty.
- \mathcal{J}_{f} is completely invariant under f : that is,

$$
f\left(\mathcal{J}_{f}\right)=\mathcal{J}_{f}=f^{-1}\left(\mathcal{J}_{f}\right) .
$$

- Blowing-up property: if U is open and meets \mathcal{J}_{f}, then

$$
\bigcup_{n \geq 1} f^{n}(U) \supset \mathbb{C} \backslash\{\text { one point }\}
$$

- If $z \in \mathcal{J}_{f}$, then $\mathcal{J}_{f}=\overline{\bigcup_{n \geq 0} f^{-n}(z)}$.
- \mathcal{J}_{f} has a dense subset of periodic points.

Similar results hold for rational and transcendental entire functions.

Quasiregular mappings

- Quasiregular maps $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ generalise analytic functions on \mathbb{C}.
- Analytic functions map small circles to small circles.
- Informally, a continuous map $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is called quasiregular (qr) if it maps infinitesimal spheres to infinitesimal ellipsoids of bounded eccentricity (i.e. the ratio major axis/minor axis is bdd).
- For $K \geq 1$, we say that f is K-quasiregular if the amount of local stretching is $\leq K$ everywhere.

Simple examples

- $(x, y) \mapsto(K x, y)$ is K-qr.
- With $N \in \mathbb{N}$ and cyl. co-ords on \mathbb{R}^{3}, the map $\left(r, \theta, x_{3}\right) \mapsto\left(r, N \theta, x_{3}\right)$.
- Analytic functions on \mathbb{C} are 1 -qr.

Qr maps of \mathbb{R}^{d} classified as polynomial type or transcendental type.

Quasiregular mappings

Good news

- Some machinery from complex analysis carries over to qr maps.
- Qr maps are open, discrete and differentiable a.e.
- Composition of two quasiregular maps is itself quasiregular. Thus: f is $q r \Longrightarrow f^{n}$ is qr.

Bad news

- Sum of two quasiregular maps need not be quasiregular.
- The amount of stretching grows on iteration:
f is K-qr \Longrightarrow only that f^{n} is K^{n}-qr.

Example: the Zorich mapping

The Zorich map $Z: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \backslash\{\mathbf{0}\}$ is a quasiregular analogue of the exponential function. It can be defined as follows:

- Choose a bi-Lipschitz map

$$
h:[-1,1]^{2} \rightarrow\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1, x_{3} \geq 0\right\} .
$$

(2) Define $Z:[-1,1]^{2} \times \mathbb{R} \rightarrow\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{3} \geq 0\right\}$ by

$$
Z\left(x_{1}, x_{2}, x_{3}\right)=e^{x_{3}} h\left(x_{1}, x_{2}\right) .
$$

- Extend Z to all of \mathbb{R}^{3} by repeatedly reflecting in planes.

The Zorich map is quasiregular on \mathbb{R}^{3}, is periodic in the x_{1} and x_{2} directions, and grows/decays exponentially in x_{3} direction.

More examples

- For $z \in \mathbb{C}, p \in \mathbb{N}$, recall that $z^{p}=\exp (p \log z)$. Similarly, can define a quasiregular "power map" by

$$
x \mapsto Z\left(p Z^{-1}(x)\right)
$$

- A quasiregular "sine" function $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ can be constructed by mapping a half-infinite beam onto $\left\{x_{3} \geq 0\right\}$, then extending by reflections.
- Can construct a "tangent" function $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \cup\{\infty\}$ analogous to $\tan z$.
Numerical plots of iteration of T follow...

Iteration of T. Blue points $\rightarrow \mathbf{0}$ fast, red points $\rightarrow \mathbf{0}$ slowly.

Iteration of $0.7 T$ near a pole. Thanks to Dan Goodman for code.

Are there Julia sets for qr maps?

- The classical "non-normality of $\left\{f^{n}\right\}$ " definition of \mathcal{J}_{f} isn't helpful for general quasiregular maps.
- Instead, use blowing-up property to define a Julia set. Sun and Yang suggested, for quasiregular maps on $\mathbb{C}\left(=\mathbb{R}^{2}\right)$, defining

$$
\mathcal{J}_{f}=\left\{z \in \mathbb{C}: \text { for any nhd } U \text { of } z, \bigcup_{n \geq 1} f^{n}(U) \supset \mathbb{C} \backslash\{\text { one point }\}\right\}
$$

Theorem (Sun and Yang, c.2000)
If $f: \mathbb{C} \rightarrow \mathbb{C}$ is K-qr with $K<\operatorname{deg}(f)<\infty$, then $\mathcal{J}_{f} \neq \emptyset$.
Can this be generalised further?

Ideally, we might consider

$$
\mathcal{J}_{\text {finite }}=\left\{x \in \mathbb{R}^{d}: \text { for any nhd } U \text { of } x, \bigcup_{n \geq 1} f^{n}(U) \supset \mathbb{R}^{d} \backslash\{\text { finite set }\}\right\}
$$ but we don't yet know this is always non-empty. Instead, we allow a 'small' infinite set to be missed out...

Theorem (Bergweiler $(\operatorname{deg}<\infty)$, Bergweiler and $N .(\operatorname{deg}=\infty))$
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be K-quasiregular, with $K<\operatorname{deg}(f) \leq \infty$. Define

$$
\mathcal{J} \text { cap }=\left\{x \in \mathbb{R}^{d}: \text { for any nhd } \cup \text { of } x, \bigcup_{n \geq 1} f^{n}(U) \supset \mathbb{R}^{d} \backslash\{\text { small set }\}\right\} \text {. }
$$

Then $\mathcal{J}_{\text {cap }} \neq \emptyset$.

- Here \{small set\} means a set of conformal capacity zero.
- All definitions of \mathcal{J} agree for analytic functions on \mathbb{C}.
- Conjecture that $\mathcal{J}_{\text {cap }}=\mathcal{J}_{\text {finite }}$.

Iteration of quasiregular "sine" function

Theorem (Fletcher and N.)

For a quasiregular analogue of the sine function, $S: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$,

- for every non-empty open set U, we have

$$
\bigcup_{n \geq 1} S^{n}(U)=\mathbb{R}^{d} ;
$$

- thus all points have the blowing-up property, so $\mathcal{J}_{S}=\mathbb{R}^{d}$.
- Periodic points of S are dense in \mathbb{R}^{d}.

An application: Karpińska’s paradox

Bergweiler and Eremenko introduced and iterated the qr "sine" map S to create a counter-intuitive decomposition of \mathbb{R}^{d}.

Definition

A subset $H \subset \mathbb{R}^{d}$ is called a hair if there is a continuous bijection $\gamma:[0, \infty) \rightarrow H$ such that $\gamma(t) \rightarrow \infty$ as $t \rightarrow \infty$. We call $\gamma(0)$ the endpoint of the hair.

Bergweiler and Eremenko expressed \mathbb{R}^{d} as an (uncountable) union of hairs such that

- any two hairs intersect only at a common endpoint (if at all); and
- the union of the hairs without their endpoints has Hausdorff dimension 1. (It follows that set of endpoints has Hausdorff dim d.)

Escape to infinity

Definition

For a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, the escaping set is

$$
I(f)=\left\{x \in \mathbb{R}^{d}: f^{n}(x) \rightarrow \infty\right\} .
$$

For a complex polynomial f :

- All large z belong to $I(f)$;
- all escaping points $\rightarrow \infty$ at same rate;
- $\mathcal{J}_{f}=\partial I(f)$.

For polynomial type qr maps:

- same as above, except only get
 $\mathcal{J}_{f} \subset \partial I(f)$.

Escape to infinity

For transcendental entire functions on \mathbb{C} :

- Eremenko (1989) proved that $l(f) \neq \emptyset$ and $\mathcal{J}_{f}=\partial l(f)$.
- Big open question: is every component of $l(f)$ unbounded?
- Escaping points can $\rightarrow \infty$ at different rates.
- There is a fast escaping set $A(f) \subset I(f)$. Again, $\mathcal{J}_{f}=\partial A(f)$.

For transcendental type qr maps on \mathbb{R}^{d} :

- Escaping set $I(f) \neq \emptyset$, but only have inclusion $\mathcal{J}_{f} \subset \partial I(f)$.
- There is an example for which $\mathcal{J}_{f} \neq \partial l(f)$ and another for which $I(f)$ has a bounded component.

```
Theorem (Bergweiler, Fletcher and N. )
If \(f\) is trans type qr and does not grow too slowly, then \(\mathcal{J}_{f}=\partial \boldsymbol{A}(f)\).
```

Conjecture: This holds without the growth condition.

Escaping points of the Zorich mapping:

Picture credit: A. Fletcher and D. Goodman

