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Overview

• Complex dynamics.

• Quasiregular maps on Rd .

• Iteration of quasiregular maps.



Complex dynamics

• The study of iteration of analytic maps on C (or C ∪ {∞}).

• Interested in the long-term behaviour of the sequence

z, f (z), f 2(z), f 3(z), . . .

for different starting values z. Notation: e.g., f 2(z) = f (f (z)).

• Can consider different types of functions:



Complex dynamics
Given f : C→ C, we partition the plane into the Fatou set Ff and the
Julia set Jf .

Fatou set Set of starting values z near which iterates f n are ‘stable’.
If U is a small disc in Ff , then f n(U) always stays small.

Formally: Ff = {z : {f n} is normal on a nhd of z}.

Julia set Jf = C \ Ff .
The iterates f n behave chaotically on Jf .
For z ∈ Jf , can find w arbitrarily close to z such that
sequences (f n(z)) and (f n(w)) are very different.



f (z) = z2 + 0.18 + 0.55i . The Julia set Jf is boundary of white region.

Picture credit: usefuljs.net/fractals

usefuljs.net/fractals


f (z) = sin z. The Julia set Jf is boundary of black region.

Picture credit: http://paulbourke.net/fractals/sinjulia/

http://paulbourke.net/fractals/sinjulia/


• Jez = C.
• f (z) = −z2e1−z2

. Julia set Jf is in black.

Superattracting fixed points at 0 and −1 shown as dots.
Picture credit: L. Rempe-Gillen



Properties of Julia sets
Let f be a complex polynomial of degree ≥ 2. Then
• Jf is closed and non-empty.

• Jf is completely invariant under f : that is,

f (Jf ) = Jf = f−1(Jf ).

• Blowing-up property: if U is open and meets Jf , then⋃
n≥1

f n(U) ⊃ C \ {one point}.

• If z ∈ Jf , then Jf =
⋃

n≥0 f−n(z).

• Jf has a dense subset of periodic points.

Similar results hold for rational and transcendental entire functions.



Quasiregular mappings
• Quasiregular maps Rd → Rd generalise analytic functions on C.

• Analytic functions map small circles to small circles.

• Informally, a continuous map f : Rd → Rd is called quasiregular
(qr) if it maps infinitesimal spheres to infinitesimal ellipsoids of
bounded eccentricity (i.e. the ratio major axis/minor axis is bdd).

• For K ≥ 1, we say that f is K -quasiregular if the amount of local
stretching is ≤ K everywhere.

Simple examples
• (x , y) 7→ (Kx , y) is K -qr.
• With N ∈ N and cyl. co-ords on R3, the map (r , θ, x3) 7→ (r ,Nθ, x3).
• Analytic functions on C are 1-qr.

Qr maps of Rd classified as polynomial type or transcendental type.



Quasiregular mappings

Good news
• Some machinery from complex analysis carries over to qr maps.
• Qr maps are open, discrete and differentiable a.e.
• Composition of two quasiregular maps is itself quasiregular.

Thus: f is qr =⇒ f n is qr.

Bad news
• Sum of two quasiregular maps need not be quasiregular.
• The amount of stretching grows on iteration:

f is K -qr =⇒ only that f n is K n-qr.



Example: the Zorich mapping

The Zorich map Z : R3 → R3 \ {0} is a quasiregular analogue of the
exponential function. It can be defined as follows:

1 Choose a bi-Lipschitz map

h : [−1,1]2 → {(x1, x2, x3) : x2
1 + x2

2 + x2
3 = 1, x3 ≥ 0}.

2 Define Z : [−1,1]2 × R→ {(x1, x2, x3) : x3 ≥ 0} by

Z (x1, x2, x3) = ex3h(x1, x2).

3 Extend Z to all of R3 by repeatedly reflecting in planes.

The Zorich map is quasiregular on R3, is periodic in the x1 and x2
directions, and grows/decays exponentially in x3 direction.



More examples

• For z ∈ C, p ∈ N, recall that zp = exp(p log z).
Similarly, can define a quasiregular “power map” by

x 7→ Z (pZ−1(x)).

• A quasiregular “sine” function S : R3 → R3 can be constructed by
mapping a half-infinite beam onto {x3 ≥ 0}, then extending by
reflections.

• Can construct a “tangent” function T : R3 → R3 ∪ {∞} analogous
to tan z.
Numerical plots of iteration of T follow...



Iteration of T . Blue points→ 0 fast, red points→ 0 slowly.



Iteration of 0.7T near a pole. Thanks to Dan Goodman for code.



Are there Julia sets for qr maps?

• The classical “non-normality of {f n}” definition of Jf isn’t helpful
for general quasiregular maps.

• Instead, use blowing-up property to define a Julia set.
Sun and Yang suggested, for quasiregular maps on C (= R2),
defining

Jf = {z ∈ C : for any nhd U of z,
⋃
n≥1

f n(U) ⊃ C \ {one point}}

Theorem (Sun and Yang, c.2000)
If f : C→ C is K -qr with K < deg(f ) <∞, then Jf 6= ∅.

Can this be generalised further?



Ideally, we might consider

Jfinite = {x ∈ Rd : for any nhd U of x ,
⋃
n≥1

f n(U) ⊃ Rd \ {finite set}}

but we don’t yet know this is always non-empty. Instead, we allow a
‘small’ infinite set to be missed out...

Theorem (Bergweiler (deg <∞), Bergweiler and N. (deg =∞))

Let f : Rd → Rd be K -quasiregular, with K < deg(f ) ≤ ∞. Define

Jcap = {x ∈ Rd : for any nhd U of x ,
⋃
n≥1

f n(U) ⊃ Rd \ {small set}}.

Then Jcap 6= ∅.

• Here {small set} means a set of conformal capacity zero.
• All definitions of J agree for analytic functions on C.
• Conjecture that Jcap = Jfinite.



Iteration of quasiregular “sine” function

Theorem (Fletcher and N.)

For a quasiregular analogue of the sine function, S : Rd → Rd ,
• for every non-empty open set U, we have⋃

n≥1

Sn(U) = Rd ;

• thus all points have the blowing-up property, so JS = Rd .
• Periodic points of S are dense in Rd .



An application: Karpińska’s paradox

Bergweiler and Eremenko introduced and iterated the qr “sine” map S
to create a counter-intuitive decomposition of Rd .

Definition
A subset H ⊂ Rd is called a hair if there is a continuous bijection
γ : [0,∞)→ H such that γ(t)→∞ as t →∞. We call γ(0) the
endpoint of the hair.

Bergweiler and Eremenko expressed Rd as an (uncountable) union of
hairs such that
• any two hairs intersect only at a common endpoint (if at all); and
• the union of the hairs without their endpoints has Hausdorff

dimension 1. (It follows that set of endpoints has Hausdorff dim d .)



Escape to infinity
Definition
For a function f : Rd → Rd , the escaping set is

I(f ) = {x ∈ Rd : f n(x)→∞}.

For a complex polynomial f :
• All large z belong to I(f );
• all escaping points→∞ at same rate;
• Jf = ∂I(f ).

For polynomial type qr maps:
• same as above, except only get
Jf ⊂ ∂I(f ).



Escape to infinity

For transcendental entire functions on C:
• Eremenko (1989) proved that I(f ) 6= ∅ and Jf = ∂I(f ).
• Big open question: is every component of I(f ) unbounded?
• Escaping points can→∞ at different rates.
• There is a fast escaping set A(f ) ⊂ I(f ). Again, Jf = ∂A(f ).

For transcendental type qr maps on Rd :
• Escaping set I(f ) 6= ∅, but only have inclusion Jf ⊂ ∂I(f ).
• There is an example for which Jf 6= ∂I(f ) and another for which

I(f ) has a bounded component.

Theorem (Bergweiler, Fletcher and N.)

If f is trans type qr and does not grow too slowly, then Jf = ∂A(f ).

Conjecture: This holds without the growth condition.



Escaping points of the Zorich mapping:

Picture credit: A. Fletcher and D. Goodman


